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Abstract— In this article we introduce a novel approach in
music transcription (i.e., in detection of pitch, loudness and
timing of all sound events in the complex music signal) working
without any constraints on the observed music signal in general.
It follows the reverse working of music sequencers. That is, we
have a bank comprising arbitrary sounds as drums, melodic
sounds, etc. Given the bank of sounds and a piece of a complex
music signal for analysis, the sounds in the bank (or their
modifications) are identified in the music signal. The sound
events are the output of the identification process. When we try
to put what was identified into the track, we should obtain the
same or rather similar song up to some point. The core part
of the algorithm is the the sequential Monte Carlo method
(SMC). In this article, the necessary theory of the SMC is
introduced, the state-of-the-art in music transcription by the
SMC is presented. The algorithm based on the novel approach
is described and demonstration of its functionality is depicted.

I. INTRODUCTION

The problem of music signal processing has been referred
since 1970s. The state-of-the-art systems can be divided
into two parts: the transcribing and separating tasks. The
primary target material for both of them is usually a complex
music signal where several sounds are played simultaneously.
A typical example is a Western music piece containing,
e.g., drums, bass guitar, keyboard or guitar tracks, and
singing. The transcribing tasks. A complete transcription
would require the pitch1, loudness, timing and instrument
of all the sound events to be resolved. These parameters
capture the meaningful music information to perform or
synthesize a piece of music. In Western tradition, the written
music uses the note symbols to indicate these parameters.
In a computational transcription system, a MIDI file is
an appropriate format for musical notation. Detecting and
recognizing individual sounds in music is a big part of its
perception, although musical notation is primarily designed
to serve for sound production and not to model hearing. It
should be emphasized that we do not hear music in terms of
note symbols but, as described Bregman, music often “fools”
the auditory system so that we perceive simultaneous sounds
as a single entity, see the book [4], page 5. And there follows
a problem – when two characteristic sounds2 played together
produce another characteristic sound, which one(s) is (are)
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1Pitch is defined as the frequency of the sine wave that is matched
to the target sound by human listeners. Fundamental frequency is the
corresponding physical term and is defined for periodic or nearly-periodic
sounds only.

2meaning e.g. a sound of a particular instrument

characteristic? Instruments (or sounds) are referred to as the
non-percussive (pitched) or percussive (drums, . . . ). In the
transcription of pitched instruments, typical restrictions are
that the number of concurrent sounds is limited, interference
of drums and percussive sounds is not allowed, or only a
specific instrument is considered. In percussion transcription,
quite good accuracy has been achieved in the transcription
of percussive tracks which comprise a limited number of
instruments and no pitched instruments. Research on musical
instrument classification has mostly concentrated on working
with isolated sounds, although more recently this has been
attempted in polyphonic audio signals. The separating tasks.
In the input there is either one or more complex music
signals (microphones). By this task we mean to separate
the sound sources according to their statistical independence.
The more microphones we have and the more statistically
independent the simultaneous sounds are, the separation is
more successful. The output is an audio wave.

In this report we introduce a novel approach in music
signal processing. We follow the working of the music
sequencers. They work so that we have a bank of sounds,
e.g., the audio-WAV-samples3, as the key-stones to compose
a music. These sounds are put into tracks. The resulting
music signal is a superposition of these sounds. In this
approach we would like to simulate the inverse process.
Thus, given the bank of sounds and a piece of a complex
music signal, the sounds in the bank (or their modifications)
are identified in the music signal. The sound events are the
output of the identification process. When we try to put what
was identified into the track, we should obtain the same or
rather similar song up to some point.

Let us call the bank of sounds as the wave-table and its
sounds as the (sound) components, the input music piece
as the observed music signal. The superposition of sounds
we will term as the composition, its reverse process by the
identification or decomposition. See Fig. 1.

This novel approach can be classified as the transcribing
tasks. It can be seen as a generalization of a transcription
– by the components we can characterize what should be
sought, thus this proposal is not dedicated for any special
kind of music signals to work correct. Certainly, often cited
polyphonic periodic sound (a piano) transcription or drum
transcription algorithms can be resolved by this proposal,
too.

Recently, the same novel approach was discussed in [9],

3The sound samples can be arbitrary in general (arbitrary in the length,
loudness and sound color) – from the tone A1 of a piano, to a drum pattern
of a popular song.
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Fig. 1. Illustration of a music sequencer operation. The various colors
of the component events in the tracks belong to the different component
modifications. E.g., the changes between the red and yellow color could
denote the pitch-shifting. Another colors could denote the various truncation
of the components, or changes of the component loudness in comparison
to the original in the wave-table.

[10]. In [9], the problem was treated by optimization methods
as a part of the unsupervised sound separation algorithm
of Virtanen [11]. However, the author did not deal with
the component truncation there. This causes ending of the
optimization in a low local minima, since the huge number
of free parameters, thus the results may not be useful. In
[10], the problem solution by the sequential Monte Carlo
(SMC) as in this article is considered, however no results
are presented there.

In the section II, the theory of the SMC is introduced,
in III, the state-of-the-art in music signal processing by
the SMC is presented. In IV, we define this approach
thoroughly and present the algorithm based on the proposal.
Demonstration of its functionality is depicted there and its
parameters are discussed. In the last sections, the conclusions
and the future suggestions are discussed.

II. SEQUENTIAL MONTE CARLO METHODS (MC)

A. Monte Carlo Methods (MC)

Monte Carlo methods utilize statistical sampling and
estimation techniques to evaluate the solutions to mathe-
matical problems. Having enough samples reflecting some
phenomenon, the distribution of the phenomenon can be
approximated. The main concept is that the goal distribution
is a posterior and we operate in the Bayesian framework.

There is a random variable x being a scalar or a vector
in some space X which can be continuous or discrete. The
probability, that a random variable x will appear, is denoted
p(x) where p(.) is a distribution function4.

For example, the minimum-mean square error (MMSE)
estimates are determined by

x̂ =
∫

X
x.p(x|y)dx (1)

4For simplicity, the probability density function p(.) of a continuous
variable is termed identically as a distribution P (.) of a discrete variable.

Whenever this estimation is not possible, a numerical inte-
gration technique should be implemented. Consider the more
general integral computation case

I[h] =
∫

X
h(x)p(x|y)dx (2)

where I[h] represents the expected value of the function h.
When the dimension of X is small (smaller than three), it

can be calculated numerically via Riemann (provided X is a
compact set). However, the dimension we encounter in music
signal modeling takes the size of tens or hundreds. Since
the grid size increases exponentially with the dimension, the
numerical approach becomes infeasible.

Fortunately, another numerical computation technique can
be applied. Assume random samples x(i), i = 1, . . . , N
are available, where each sample is distributed according to
p(x|y) (x(i) ∼ p(x|y)). Then I[h] can be approximated by
the empirical average

I[h] ≈ ÎN [h] =
1
N

N∑

i=1

h(xi) (3)

, which is called the Monte Carlo estimate of I[h]. Then
the random samples x(i), i = 1, . . . , N are referred to as
the Monte Carlo samples. The estimate ÎN [h] is unbiased
for any N and consistent. One crucial property of Monte
Carlo approximation is that the estimation accuracy does
not depend as much on the dimensionality of X but on the
ability to focus on the significant locations in the posterior
distribution.

The hardest thing in MC techniques is to obtain an
approximating distribution from which is possible to generate
the samples. Several techniques have been developed for
random variable generation from any distribution. One of
them is the importance sampling, the other is, e.g., the Monte
Carlo Markov Chain (MCMC) method [5], [6].

B. Importance Sampling (IS)

Suppose a posterior distribution p(x|y) from which it
is difficult to draw the samples. Next, assume the random
samples to be easily generated from another distribution
x(i) ∼ q(x|y), i = 1, . . . , N , and q(x|y) 6= 0 whenever
p(x|y) 6= 0. In terms of the so called importance distribution
q(.), the expectation of h can be rewritten as follows:

I[h] =
∫

X
h(x)p(x|y)dx =

∫

X
h(x)

p(x|y)
q(x|y)

q(x|y)dx (4)

Then for the following Monte Carlo estimate it holds [3]:

ÎN [h] =
N∑

i=1

ω(i)h(x(i)) ≈ I[h], with ω(i) =
p(x(i)|y)
q(x(i)|y)

(5)
The imporatance weight ω(i) can be understand as a discrep-
ancy between q(.) and p(.), when the samples are generated
from q(.) instead of p(.). If we had enough samples from
whole support of p(.) but generated from q(.), the correct
estimation of ÎN [h] would not be subject to the suitable
importance q(.) selection. Thus, the importance pdf should
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be as close as possible to the posterior distribution because
then we have enough samples on the locations of high
posterior probability. Having the samples from q(.) the
posterior probability can be approximated by

p(x|y) ≈
N∑

i=1

ω(i)δ(x− x(i)) (6)

where δ the Kronecker’s delta symbol.

C. Sequential Importance Sampling (SIS)

The SIS is a group of methods applying the IS into the
dynamic framework of the sequential Monte Carlo (SMC).

The sequential form of the weight ω
(i)
t of the sample

sequence up to time t, x(i)
0:t, is given as follows:

ω
(i)
t =

p(x(i)
0:t|y1:t)

q(x(i)
0:t|y1:t)

∝ ω
(i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

0:t−1,yt)
= ώ

(i)
t

(7)
The step towards the recursive formula ώ

(i)
t in (7) can be

accomplished because the denominator p(yt|y1:t) is constant
for all x(i)

t , i = 1, . . . , N and because it is considered
q(x(i)

t |x(i)
0:t−1,y1:t) = q(x(i)

t |x(i)
0:t−1,yt) following from the

Markov process, see [3], [2]. The weight ω
(i)
t is a normalized

form of ώ
(i)
t , that is ω

(i)
t = ώ

(i)
t / 1

N

∑N
j=1 ώ(j).

In the common case only a filtered estimate of p(xt|y1:t)
is required at each time step. In such scenarios, only x(i)

t

must be stored, therefore one can discard the path x(i)
0:t−1.

The modified weight is then

ω
(i)
t ∝ ω

(i)
t−1

p(yt|x(i)
t )p(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1,yt)
(8)

and the posterior filtered density p(xt|y1:t) can be approxi-
mated as

p(xt|y1:t) ≈ p̂(xt|y1:t) =
N∑

i=1

ω
(i)
t δ(xt − x(i)

t ) (9)

D. Degeneracy Problem and Generic SIS Algorithm

A common problem with the SIS particle filter is the
degeneracy where after a few iterations, all except one
sample have a negligible weight. It has been shown in [1]
that the variance of the importance weights can only increase
over time, and thus, it is impossible to avoid the degener-
acy phenomenon. A suitable measure of degeneracy of the
algorithm is the effective sample size Neff approximated by

N̂eff =
1

∑N
i=1(ω

(i)
t )2

. (10)

Notice, that Neff ≤ N , and small Neff indicates a severe
degeneracy. The brute force approach to reducing its effect
is to use an increasing number of samples N as t increases or
a very large N . This is impractical, therefore we rely on two
other methods: First on a good sampling algorithm selection
[3], [2], or on a use of resampling. The basic idea of resam-
pling is to eliminate samples that have small weights and to
concentrate on samples with large weights. The resampling

Algorithm Generic Sequential Importance Sampling Algo-
rithm:
• For i = 1, . . . , N

– Draw x(i)
t ∼ q(x(i)

t |x(i)
t−1,yt).

– Assign the normalized sample weight according to
(8).

• Calculate N̂eff using (10).
• If N̂eff < Nthreshold

– Resample as written in II-D.
• Compute estimates5: x̂t =

∑N
i=1 ω

(i)
t x(i)

t .

step involves generating a new set {x∗(i)t }N
i=1 by resampling

N times from an approximate discrete representation (9) so
that p(x∗(i)t = x(j)

t ) = ω
(j)
t . The resulting sample is in

fact an i.i.d. sample from the discrete density (9), thus, the
normalized weights are now reset to ω

(i)
t = 1/N .

III. STATE-OF-THE-ART IN SMC FOR MUSIC SIGNAL
PROCESSING

Music data have some common characteristics, but they
may vary a lot. Even two single real sound sources, produced
by identical musical instruments, are not the same even under
the most equal conditions. The sources cannot be modeled
deterministically. Statistical methods represent a powerful
tool for modeling of sound sources.

The algorithms of the SMC are aimed at pitch detection
of simultaneous tones in one segment (frame) of music,
usually length of 92ms or 46ms. They work without any
prior knowledge on the different tones and timbres of music
instruments. For the sake of this they are able to operate
reliably only with periodic sounds.

There are two main approaches also of MC for music
signal processing – the on-line (SMC) and off-line – Monte
Carlo Markov Chain [6]. The off-line approaches have a
major advantage of being quite accurate. The drawback is
that the computational requirements may be high. On-line
approaches, on the other hand, only use the current frame at
time t and information from the past estimates. It should be
noted that they are quite attractive for multi-pitch detection,
because they do not require a separate onset / offset detection
as in the off-line [6], and they provide some flexibility to
formulate completely on-line inference schemas, such as
those presented in this section. Unfortunately, there is not
a proper evaluation for online MC multi-pitch tracking, it is
only pointed out in [4] that it is comparable to the off-line
ones. For the off-line approaches in [4], Davy reports for
mono-phony 100% accuracy, for polyphony 2 about 85%,
for polyphony 3 about 74%, for polyphony 4 about 71%
accuracy. There are also other approaches [4], however,
all of them have a common property – they are aimed at
periodic sound recordings and discovering the fundamental
frequencies of tones in a polyphony.

A. Application Example of the SMC in MSP

Approach of Davy and Dubois [7], [8]. We have a discrete
time signal denoted by {yt} with sampling frequency fs.
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In [8] the signal model estimate is given as follows:

zt(τ) =
Nt∑

j=1

H∑

h=1

[
αh,j(t)w(τ) cos

(
2π

ft,h,j

fs
τ ′

)]
. (11)

The letter w is an analysis window (or a frame) of length
2Lw + 1 time points with typically Gaussian, Hamming,
etc. shape. The window is centered around time t, where
yt = [zt−Lw/fs

, . . . , zt+Lw/fs
]. The positioning in the ob-

servation signal respecting the offset at time t of the current
frame is denoted τ ′ = t + (τ − 1 − Lw)/fs. H is the
number of harmonics (being fixed) and Nt is the number
of simultaneous tones / notes at time t.

The discrete Fourier transform (DFT) is applied on the
frames of the windowed observed and estimated signal,
yielding yDFT

t = ||DFT(wt ∗ yt)||2, zDFT
t = ||DFT(zt)||2

respectively, thus we are getting the observation equation

yDFT
t = zDFT

t (f t,αt, Nt) + vt. (12)

“∗” denotes element-wise multiplication. It determines
the Gaussian likelihood p(yDFT

t |f t,αt, Nt) =
N (yDFT

t ; zDFT
t , diag(r)) where diag(r) is a diagonal

covariance matrix with elements of value 0.05. The prior
for f t, αt is given by a random walk

ft,h,j = ft−1,h,j + vft−1,h,j (13)

αt,h,j = αt−1,h,j + vα
t−1,h,j (14)

where v
(.)
t−1,h,j is a zero-mean white noise with Gaussian

density of variance r
(.)
t−1,h,j . The variance for amplitudes and

frequencies is allowed to evolve according to

log(r(.)
t,h,j) = log(r(.)

t−1,h,j) + ϕ
(.)
t−1,h,j . (15)

The prior for number of simultaneous tones Nt was given
by a transitional table, such as in table I, on the right.

Sampling of variables to estimate was performed from the
prior / transitional for Nt and by Kalman filtering [2].

Number of particles was M = 500, H = 6, Nt from 1 to
3, frame length (Hanning) 256 and σϕ = 0.01. There is no
information about time the processing takes.

The observed material (artificially created recording) was
tested by a root means square (RMS) error ErrRMS =√

∑K
k=1 ω

(i)
t ||yDFT

t −zDFT
t ||2

Lw
.

IV. PROPOSAL SOLUTION BY SMC METHODS

A. Introduction

There is an observed music signal represented by a matrix
Y. Its columns, yDFT

t , are the magnitude DFT values of the
windowed signal in one frame yt.

All frames of all components are also windowed and
transformed by the DFT. The absolute values (i.e., the
magnitude spectrum) yield xDFT

c . They build column by
column a matrix X =

[
xDFT

1 |xDFT
2 |..|xDFT

C

]
, where C is

the number of frames of all components. E.g., the first com-
ponent captures 1–6th column, the second 7–18th column,

etc. Within one component all frames keep the time order
with the increasing column index.

In order to prevent the singular cases, we consider all
frames of all components to be non-silent, that is ||xDFT

c || >
threshold.

We consider a linear signal model. For every observation
yt, matrix X we have

yDFT
t ≈ zDFT

t = Xst (16)

where st is the vector of presence or non-presence. Its
elements are either zero, or one according to if the c-th frame
is present in yDFT

t or not. Its every cth element corresponds
to xDFT

c , c = 1, . . . , C. We also define a vector of indices of
frames which are present at time t, nt. This is an equivalent
of st. Its length is represented by Nt. In the following text
we often deal with nj

t or ni
t, which is referred to as a value

on the i-th or j-th position of the vector of indices nt.
When the vector size is only of one, there is no point to
express the index position i or j in vector of indices, hence,
this is denoted by nt. The number of active frames at t is
then Nt =

∑C
c=1 sc

t , and their maximal number is given
beforehand (Nmax).

The reason why we apply stochastic methods is an over-
completeness6. Since we deal with a huge amount of data
(parameters of all frames) and we want to find just a few
of them, common optimization algorithms fail. However,
stochastic modeling allows to incorporate any heuristics we
know about the problem7, in such a way that the right
subspace of the parameters is focused. Our task is to estimate
parameters according to their posterior distribution.

B. Estimated Parameters
Desired parameters at time t are the number of polyphony

Nt and the vector of indices, that is, vector of frame presence
nt ≡ st. We note that a side product of the estimation are
the bounds of the component sounds (they are not sampled)
– since we work with individual frames of the sound com-
ponents, it is allowed to identify an arbitrary length of the
sound components. The detection of the arbitrary length can
be understood as the component modification (section I).

C. Likelihood and Transitional Distribution
Likelihood is given as Lt(yDFT

t |st, σ
2
1,t) =

N (yDFT
t ;X.st,Σσ1), Σσ1 = 1

σ2
1,t

.I.
For the vector of presence nt ≡ st and the number of

present components Nt the transitionals (or the priors) are:
1) p(nt|nt−1, Nt): Transition probabilities are deter-

mined by a matrix H. The values are denoting the succession
between all frames. See example on table I.

Discrete distribution for sampling of one frame nt pres-
ence conditioned the frame combination nt−1 is as follows:

p(nt|nt−1, Nt) ∝ k1

Nt−1∑

j=1

h(nj
t−1)

+ k2

C∑
c=1

h(c) (17)

6Meaning “too many parameters to assess”.
7E.g., heuristic of the number of simultaneous components, or, the silent

parts in the components which are good candidates for the start/end points
of the component, or a likelihood of the estimated component combination.
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From
To 1 2 3 4

1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

Nt−1

kt
0 1 2

+2 1/10 0 0
+1 2/10 1/9 0
0 7/10 7/9 7/10
-1 0 1/9 2/10
-2 0 0 1/10

TABLE I
LEFT TABLE REPRESENTS THE EXAMPLE OF TRANSITION

PROBABILITIES OF 4 FRAMES. RIGHT TABLE IS BOTH PRIOR

(TRANSITIONAL) AND IMPORTANCE DISTRIBUTION FOR NUMBER OF

SIMULTANEOUS ACTIVE FRAMES Nt , WHICH IS GIVEN BY

kt ∼ p(kt|Nt−1) AND BY Nt = Nt−1 + kt . WE CONSIDER HERE

Nmax = 2.

The left term of “+” models the highlighted probability of
the expected following frames while the right term represents
a vector of all frames presence. The former is multiplied
by k1 =

∑
i

∑Nt−1
j=1 h(nj

t−1)
. The latter is the case of

“sampling from silence”, i.e., sampling from information
excluding the previous present frames, it is multiplied by
k2 =

∑
i,j hi,j . By k1, k2 multiplication it is implied that

the prior (transitional) distribution of nt is equally probable
for the left or right term. The total probability of the pre-
dicted frame combination is calculated by p(nt|nt−1, Nt) ∝
1

Nt

∑Nt

i=1 p(nt|nt−1, Nt).
2) p(Nt|Nt−1) ≡ p(kt|Nt−1): Given by a table I. The

aim is to allow Nt to increase or decrease but the probability
to keep it constant must be prominent.

D. Importance Distributions

The importance distributions should be as close as possible
to the posterior distribution and they have to be sample-
able. There is not a closer distribution for Nt than the prior
(transitional) one, thus this is sampled as the importance
distribution. The transitional distribution will not appear in
the weight formula (8) since this is reduced by a fraction.
For the presence vector nt calculation a heuristical approach
is applied.

1) Calculating and Sampling from p(nt|yDFT
t , Nt,nt−1):

The similarity measure of j-th frame nj
t to the observation

yDFT
t corresponds to a temporary likelihood p(yDFT

t |nj
t ).

The measure should be fast and effective to calculate. If
||yDFT

t || < threshold, i.e., if there is a silence in the
observed signal, then ∀c ∈ C : p(yDFT

t |nc
t) = 0. We tried

these simple similarity measures:

p(yDFT
t |nj

t ) = cos ϕ =
yDFT

t .xDFT
nj

t

||yDFT
t ||.||xDFT

nj
t

||
∝ 1−min

β
||yDFT

t − β.xDFT
c ||

= N (yDFT
t ; β̂.xDFT

c ,Σx) (18)

where β̂ = minβ ||yDFT
t − β.xDFT

c ||. The best of them
appeared to be the first one, since this was reflecting the
presence of a frame.

Algorithm Algorithm of SMC:
• Initialization:

– For i = 1, . . . , M sample Ñ0
(i) ∼ p(Nt|Nt−1 = 0)

– For i = 1, . . . , M

∗ For j = 1, . . . , N0 sample nj
0 ∼ p(n0) ∝ ∑C

c=1 hc

∗ Sample ñ
(i)
0 ∼ p(n0) = 1

N0

∑N0
j=1 p(nj

0)

• Iterations:
– For t = 1, 2, . . . , T

∗ For i = 1, . . . , M

· sample Ñt
(i) ∼ p(Nt|N(i)

t−1)

· sample s̃t
(i) ≡ ñt

(i) ∼ p(nt|yDFT
t , Ñt

(i)
,n

(i)
t−1)

· compute the weight:

ω̃i
t = ωi

t−1

Lt(yDFT
t |s̃t,σ2

1,t)p(ñt
(i)|n(i)

t−1,Ñt
(i)

)

p(ñt
(i)|yDFT

t ,Ñt
(i)

,n(i)
t−1)

(21)

∗ Normalize the weights ω̃
(i)
t so that

∑N
i=1 ω̃

(i)
t = 1

∗ Compute estimates of nt:

Nt : N̂t ≈
∑M

i=1 ω̃
(i)
t Ñt

(i)

nt : n̂t ≈ argmaxnt

∑M
i=1 ω̃

(i)
t I(ñt

(i) = nt, Ñt
(i)

= N̂t)
(22)

∗ If
[∑M

i=1 ω̃
2(i)
t

]−1 ≤ ηM , then resample, i.e. duplicate
the particles with large weight and remove the particles with
small weight. The new particles lose the tilde sign and have
weight ω

(i)
t = 1/M .

∗ Else, assign the particles n
(i)
t ← ñ

(i)
t , N

(i)
t ← Ñt

(i)
.

Drawing from p(nt|yDFT
t , Nt,nt−1). For j = 1 . . . Nt we

sample8 from the discrete distribution

p(nj
t |yDFT

t , Nt,nt−1) ∝ p(yDFT
t |nj

t ) ∗ p(nj
t |nt−1, Nt)

(19)
where “*” denotes element-wise multiplication of the two
discrete distributions represented by vectors. Hence, we re-
sult in a total presence of the frame-combination importance
probability

p(nt|yDFT
t , Nt,nt−1) ∝ 1

Nt

Nt∑

j=1

p(nj
t |yDFT

t , Nt,nt−1).

(20)
Note that in (20) the probability of sampled nt combina-

tion is calculated up to a normalizing constant which can be
omitted since it is constant for all frame combinations.

It must be mentioned here, that in the case when we drew
two identical nj

t , the sampling is repeated.
In a singular case the zero distribution should be sampled

– this can happen when the sound loudness in the observation
signal did not get over a given threshold (see p(yDFT

t |nj
t )

heuristics above). Then an arbitrary Nt is replaced by Nt = 0
and some negligible probability is assigned to this9.

E. Testing

The testing material was similar to [9] – we had down-
loaded 21 sound components of arbitrary length, together
about 30 seconds of complex music signal, sampled at 44.1
kHz. They represented the wave-table and counted miscella-
neous sounds from drum patterns to individual tones of bass

8Nt is given by sampling from p(Nt|Nt−1).
9resulting in a large particle weight.
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Fig. 2. The figure should represent the hits regarding the similarity
measure. The black and white fields denotes the similarity measure (i.e.,
the part of the heuristics to express the importance distribution). The fields
correspond to all frames of these two components – the first – a drum
pattern (“disco-funk”), the second – an organ sound. On the y-axis, every
element corresponds to one frame of one of the two components. Therefore
the consecutive frames of one component produce the diagonals. The first
is starting by frame 7, finishing by frame 14, the second similarly, they
overlap in 5 frames. The red circles represent positions of frames which
should be identified, the filled circles denote the positions of what was really
identified. We mention, that the frame-wise identification runs on frames of
all components, for clarity we are focused only on the two components in
this figure.

or various synthesizers, however, due to the singularities, all
components did not contained silent parts longer than 93ms,
which was the length of one frame. The aforementioned
matrix X counted 354 not overlapping frames. One frame
of the DFT contained 2048 spectral bins10. The algorithm is
designed to be able to operate with a silent in yDFT

t .
The testing sound was created from two components of

the wave-table. Both were truncated and the bounds were
recorded. The sound components were overlapped so that
the longer component started at the half of the shorter –
they were summed resulting in a testing sound, thus, we had
exact information about the bounds (truncations), the number
of the components and their times. An example can be seen
on Fig. 2.

If there is Nt−1 = 1 at the time t−1 and the change plus-
minus one is happened, there are 20% of the correct number
at time t. If we intended to cover all frame combination
(Nmax = 2) we would need more than 3.105. In this SMC
algorithm we tried to test only 2000 samples (particles).

We have found out that better was to choose greater σ2
t,1

since the frame combination of two having correct only one
inner frame was assigned to a greater weight. M = 2000
samples was enough to cover 354 individual frames. We
set σ2

t,1 = 150 when the amplitude of a sound wave was

10A half of 4096.

maximally one. Remaining settings are presented in the
previous subsection.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The aim of this work was to introduce a novel system
(concept) for detection of sounds presented in a complex
music signal. The sequential Monte Carlo was proposed to
be the core part. The theoretical background of the SMC was
introduced. The state-of-the-art the SMC for music signal
processing were outlined. In the testing part, we explained
which parameter values we choose and provided a figure
of a representative test example. We explained where this
presents its challenge and its utilization.

B. Future Works

1) Algorithm: The results could be improved by applica-
tion of the smoothing [3], [2]. Next, we would try to work
also with frame differences as another heuristics “inside” the
importance distribution. A smart similarity measure selection
may cause the improvement in the identification as well.

2) Testing: We propose a combinations of, e.g., the root
means square error between the truth and the estimate, and
error following from the hitting or non-hitting the exact
frame. The testing material could contain the combinations
of only non-percussion music pieces, only percussion music
pieces, or their combinations. Different level of a distortion
could be applied onto the synthesized recordings (e.g., ob-
tained from songs based on MIDI) in order to obtain various
quality testing material with the exact information about its
content.
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